organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[4-(N-Cyclohexylsulfamoyl)phenyl]acetamide

Islam Ullah Khan,^a‡ Mehmet Akkurt,^b* Faiza Anwar^a and Shahzad Sharif^a

^aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 12 March 2010; accepted 14 March 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.062; wR factor = 0.218; data-to-parameter ratio = 19.9.

In the title compound, $C_{14}H_{20}N_2O_3S$, the cyclohexyl ring adopts a chair conformation: the four coplanar C atoms of this ring make a dihedral angle of 64.8 $(2)^{\circ}$ with the benzene ring. In the molecule, an intramolecular $C-H\cdots O$ contact generates an S(6) ring motif. In the crystal structure, molecules are linked via intermolecular N-H···O hydrogen bonds into two-dimensional layers propagating in (100).

Related literature

For related structures, see: Sharif et al. (2010); Mariam et al. (2009a,b); Asiri et al. (2009); Khan et al. (2009); Arshad et al. (2008, 2009); Gowda et al. (2007a,b,c); Haider et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data

$C_{14}H_{20}N_2O_3S$	c = 7.9769 (12) Å
$M_r = 296.39$	$\beta = 102.387(7)^{\circ}$
Monoclinic, $P2_1/c$	V = 1528.1 (4) Å
a = 14.6929 (19) Å	Z = 4
b = 13.3486 (19) Å	Mo $K\alpha$ radiation

‡ Additional corresponding author, e-mail: iuklodhi@yahoo.com.

 $\mu = 0.22 \text{ mm}^{-1}$ $0.32 \times 0.09 \times 0.06 \text{ mm}$ T = 296 KData collection Bruker APEXII CCD 3628 independent reflections diffractometer 1358 reflections with $I > 2\sigma(I)$ 11442 measured reflections $R_{\rm int} = 0.110$ Refinement $R[F^2 > 2\sigma(F^2)] = 0.062$ 182 parameters $wR(F^2) = 0.218$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-1}$ S = 0.94 $\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$ 3628 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O3^{i}$ $N2 - H2 \cdots O2^{ii}$ $C9 - H9 \cdots O3$	0.86 0.86 0.93	2.07 2.11 2.28	2.862 (4) 2.970 (4) 2.866 (5)	153 177 120

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors are grateful to the Campus Engineer GCUL, Mr Bilal Ahmad, for providing support services at the Materials Chemistry Laboratory.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5359).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, 02283-02284
- Arshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2009). Acta Cryst. E65, o3229.
- Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
- Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
- Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
- Haider, Z., Arshad, M. N., Simpson, J., Khan, I. U. & Shafiq, M. (2010). Acta Cryst. (2010). E66, o102.
- Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.

(12) Å

(4) $Å^3$

- Mariam, I., Akkurt, M., Sharif, S., Akhtar, N. & Khan, I. U. (2009a). Acta Cryst. E**65**, o2797.
- Mariam, I., Akkurt, M., Sharif, S., Haider, S. K. & Khan, I. U. (2009b). Acta *Cryst.* E**65**, 01737. Nardelli, M. (1983). *Comput. Chem.* **7**, 95–98.

- Sharif, S., Akkurt, M., Khan, I. U., Salariya, M. A. & Ahmad, S. (2010). Acta Cryst. E66, 073-074.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, 0868-0869 [doi:10.1107/S160053681000961X]

N-[4-(N-Cyclohexylsulfamoyl)phenyl]acetamide

I. U. Khan, M. Akkurt, F. Anwar and S. Sharif

Comment

The title compound (I), (Fig.1), was prepared and characterized as part of our ongoing studies of sulfonamide derivatives (Mariam *et al.*, 2009a,b; Sharif *et al.*, 2010).

The bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to those in similar structures (Sharif *et al.*, 2010; Mariam *et al.*, 2009a,b; Asiri *et al.*, 2009; Khan *et al.*, 2009; Arshad *et al.*, 2008; Gowda *et al.*, 2007*a*,*b*,*c*; Haider *et al.*, 2010).

The C1–C6 cyclohexyl ring of (I) adopts a classic chair conformation [puckering parameters (Cremer & Pople, 1975) $Q_T = 0.559$ (6) Å, $\theta = 180.0$ (6) ° and $\phi = 212$ (16) °]. Atoms C1 and C4 deviate by -0.667 (6)Å and 0.639 (4) Å, respectively, from the plane through the other four atoms (C2,C3, C5 and C6) of the cyclohexane ring. The dihedral angle between the benzene ring (C7–C12) and the C2/C3/C5/C6 least-squares plane of the cyclohexane ring is 64.76 (20)° (Nardelli, 1983).

In the molecule of (I), intramolecular C—H···O hydrogen contacts generate S(5) and S(6) ring motifs (Bernstein *et al.*, 1995) (Table 1). In the crystal structure of (I), molecules are linked *via* intermolecular N—H···O hydrogen bonds into two-dimensional layers extended along the *b* axis (Table 1 and Fig. 2).

Experimental

To 0.5 g (1.96 mmol) *N*-acetyl *p*-amino sulfonyl chloride in 10 ml of distilled water was added 0.23 ml of cyclohexylamine (1.96 mmol) and stirring continued at room temperature, while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was continuously monitored by TLC. After consumption of all the reactants the mixture was filtered, dried and recrystalized from ethyl acetate to yield colourless needles of (I).

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with N—H = 0.86 Å and C—H = 0.93-0.98 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(N, C)$.

Figures

Fig. 1. The molecule of (I) with displacement ellipsoids depicted at the 50% probability level for all non-H atoms.

Fig. 2. The packing and hydrogen bonding of (I) viewed down a-axis. Hydrogen bonding is indicated by dashed lines. For clarity, H atoms not involved in hydrogen bonding are omitted.

N-[4-(N-Cyclohexylsulfamoyl)phenyl]acetamide

Crystal data

$C_{14}H_{20}N_2O_3S$
$M_r = 296.39$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 14.6929 (19) Å
<i>b</i> = 13.3486 (19) Å
c = 7.9769 (12) Å
$\beta = 102.387 (7)^{\circ}$
$V = 1528.1 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD diffractometer	1358 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.110$
graphite	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
φ and ω scans	$h = -19 \rightarrow 16$
11442 measured reflections	$k = -17 \rightarrow 16$
3628 independent reflections	$l = -10 \rightarrow 9$
11442 measured reflections 3628 independent reflections	$k = -17 \rightarrow 16$ $l = -10 \rightarrow 9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.218$ S = 0.943628 reflections 182 parameters 0 restraints $D_x = 1.288 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1027 reflections $\theta = 3.0-18.7^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.32 \times 0.09 \times 0.06 \text{ mm}$

F(000) = 632

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0926P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.38$ e Å⁻³

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors wR and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.68133 (8)	0.41022 (7)	0.21719 (15)	0.0554 (4)
01	0.7323 (2)	0.3332 (2)	0.1552 (4)	0.0645 (11)
02	0.6417 (2)	0.4904 (2)	0.1059 (4)	0.0679 (11)
O3	0.2838 (2)	0.3369 (2)	0.5231 (4)	0.0801 (15)
N1	0.7470 (2)	0.4618 (2)	0.3789 (5)	0.0619 (13)
N2	0.3647 (2)	0.2116 (2)	0.4351 (4)	0.0515 (11)
C1	0.9600 (4)	0.3914 (5)	0.8177 (8)	0.098 (3)
C2	0.9654 (3)	0.3437 (5)	0.6484 (8)	0.101 (3)
C3	0.9037 (3)	0.3989 (4)	0.4997 (7)	0.078 (2)
C4	0.8045 (3)	0.4037 (3)	0.5194 (6)	0.0537 (16)
C5	0.7987 (3)	0.4482 (4)	0.6899 (6)	0.0732 (19)
C6	0.8608 (4)	0.3946 (4)	0.8377 (7)	0.085 (2)
C7	0.5888 (3)	0.3520 (3)	0.2880 (5)	0.0468 (16)
C8	0.5176 (3)	0.4092 (3)	0.3263 (6)	0.0585 (16)
С9	0.4436 (3)	0.3657 (3)	0.3762 (6)	0.0553 (16)
C10	0.4389 (3)	0.2626 (3)	0.3903 (5)	0.0437 (12)
C11	0.5109 (3)	0.2061 (3)	0.3535 (5)	0.0488 (16)
C12	0.5852 (3)	0.2493 (3)	0.3041 (5)	0.0483 (16)
C13	0.2927 (3)	0.2488 (3)	0.4952 (5)	0.0533 (17)
C14	0.2223 (3)	0.1742 (4)	0.5213 (7)	0.0773 (19)
H1	0.74890	0.52610	0.38430	0.0750*
H1A	0.99740	0.35330	0.91120	0.1180*
H1B	0.98490	0.45900	0.82250	0.1180*
H2	0.36500	0.14760	0.42250	0.0620*
H2A	0.94580	0.27430	0.64800	0.1210*
H2B	1.02940	0.34490	0.63450	0.1210*
H3A	0.92720	0.46630	0.49340	0.0940*
H3B	0.90600	0.36490	0.39320	0.0940*
H4	0.77990	0.33530	0.51440	0.0650*
H5A	0.73470	0.44490	0.70360	0.0870*
H5B	0.81650	0.51820	0.69190	0.0870*
H6A	0.85800	0.42850	0.94400	0.1010*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H6B	0.83830	0.32670	0.84440	0.1010*
H8	0.52010	0.47860	0.31800	0.0700*
Н9	0.39620	0.40550	0.40070	0.0660*
H11	0.50880	0.13670	0.36270	0.0580*
H12	0.63320	0.20960	0.28140	0.0580*
H14A	0.17610	0.20640	0.57140	0.1160*
H14B	0.25220	0.12230	0.59670	0.1160*
H14C	0.19300	0.14550	0.41280	0.1160*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0707 (8)	0.0406 (6)	0.0528 (8)	-0.0034 (6)	0.0085 (6)	0.0005 (6)
01	0.083 (2)	0.0502 (16)	0.065 (2)	0.0036 (15)	0.0264 (17)	-0.0055 (15)
O2	0.089 (2)	0.0530 (17)	0.060 (2)	-0.0026 (16)	0.0121 (17)	0.0160 (16)
O3	0.111 (3)	0.0498 (19)	0.088 (3)	0.0200 (18)	0.040 (2)	-0.0019 (18)
N1	0.077 (2)	0.0364 (18)	0.064 (3)	-0.0082 (17)	-0.003 (2)	-0.0040 (18)
N2	0.064 (2)	0.0383 (18)	0.051 (2)	-0.0023 (18)	0.0095 (18)	-0.0030 (16)
C1	0.078 (4)	0.114 (5)	0.089 (5)	-0.001 (3)	-0.013 (3)	0.001 (4)
C2	0.059 (3)	0.135 (5)	0.104 (6)	0.014 (3)	0.009 (3)	-0.004 (4)
C3	0.064 (3)	0.103 (4)	0.068 (4)	-0.003 (3)	0.017 (3)	-0.006 (3)
C4	0.056 (3)	0.040 (2)	0.062 (3)	-0.002 (2)	0.006 (2)	-0.002 (2)
C5	0.083 (3)	0.070 (3)	0.069 (4)	0.005 (3)	0.022 (3)	-0.003 (3)
C6	0.102 (4)	0.095 (4)	0.055 (4)	0.015 (3)	0.012 (3)	0.005 (3)
C7	0.062 (3)	0.040 (2)	0.033 (3)	0.001 (2)	-0.002 (2)	-0.0018 (18)
C8	0.079 (3)	0.030 (2)	0.065 (3)	0.000 (2)	0.012 (3)	-0.002 (2)
C9	0.071 (3)	0.038 (2)	0.060 (3)	0.006 (2)	0.021 (2)	0.001 (2)
C10	0.058 (2)	0.038 (2)	0.029 (2)	0.002 (2)	-0.0040 (19)	-0.0041 (18)
C11	0.068 (3)	0.031 (2)	0.043 (3)	0.000 (2)	0.002 (2)	-0.0018 (19)
C12	0.063 (3)	0.036 (2)	0.044 (3)	0.003 (2)	0.007 (2)	-0.0042 (18)
C13	0.071 (3)	0.051 (3)	0.036 (3)	0.007 (2)	0.007 (2)	0.001 (2)
C14	0.077 (3)	0.079 (3)	0.081 (4)	-0.001 (3)	0.028 (3)	-0.002 (3)

Geometric parameters (Å, °)

S1—O1	1.422 (3)	C11—C12	1.365 (6)
S1—O2	1.432 (3)	C13—C14	1.482 (7)
S1—N1	1.592 (4)	C1—H1A	0.9700
S1—C7	1.761 (4)	C1—H1B	0.9700
O3—C13	1.209 (5)	C2—H2A	0.9700
N1—C4	1.471 (6)	C2—H2B	0.9700
N2—C10	1.395 (5)	С3—НЗА	0.9700
N2—C13	1.347 (5)	С3—НЗВ	0.9700
N1—H1	0.8600	C4—H4	0.9800
N2—H2	0.8600	C5—H5A	0.9700
C1—C6	1.501 (9)	С5—Н5В	0.9700
C1—C2	1.511 (9)	С6—Н6А	0.9700
C2—C3	1.520 (8)	С6—Н6В	0.9700
C3—C4	1.501 (6)	С8—Н8	0.9300

C4—C5	1.503 (7)	С9—Н9	0.9300
C5—C6	1.508 (7)	C11—H11	0.9300
C7—C12	1.379 (6)	C12—H12	0.9300
С7—С8	1.381 (6)	C14—H14A	0.9600
C8—C9	1.365 (6)	C14—H14B	0.9600
C9—C10	1.384 (6)	C14—H14C	0.9600
C10—C11	1.381 (6)		
01—S1—O2	119.96 (19)	C1—C2—H2A	109.00
01—S1—N1	108.76 (18)	C1—C2—H2B	109.00
O1—S1—C7	107.04 (18)	С3—С2—Н2А	109.00
O2—S1—N1	105.91 (17)	C3—C2—H2B	109.00
O2—S1—C7	106.83 (19)	H2A—C2—H2B	108.00
N1—S1—C7	107.84 (19)	С2—С3—НЗА	109.00
S1—N1—C4	122.6 (2)	С2—С3—Н3В	109.00
C10—N2—C13	128.9 (3)	С4—С3—НЗА	109.00
C4—N1—H1	119.00	C4—C3—H3B	109.00
S1—N1—H1	119.00	H3A—C3—H3B	108.00
C10—N2—H2	116.00	N1—C4—H4	108.00
C13—N2—H2	116.00	C3—C4—H4	108.00
C2—C1—C6	110.2 (5)	C5—C4—H4	108.00
C1—C2—C3	110.9 (5)	C4—C5—H5A	109.00
C2—C3—C4	111.7 (4)	C4—C5—H5B	109.00
N1—C4—C5	110.3 (4)	С6—С5—Н5А	109.00
C3—C4—C5	110.9 (4)	С6—С5—Н5В	109.00
N1-C4-C3	110.8 (4)	H5A—C5—H5B	108.00
C4—C5—C6	112.2 (4)	C1—C6—H6A	109.00
C1—C6—C5	111.7 (5)	С1—С6—Н6В	109.00
C8—C7—C12	118.9 (4)	С5—С6—Н6А	109.00
S1—C7—C8	120.0 (3)	С5—С6—Н6В	109.00
S1—C7—C12	121.1 (3)	Н6А—С6—Н6В	108.00
C7—C8—C9	121.2 (4)	С7—С8—Н8	119.00
C8—C9—C10	120.2 (4)	С9—С8—Н8	119.00
N2—C10—C9	124.2 (4)	С8—С9—Н9	120.00
N2-C10-C11	117.7 (3)	С10—С9—Н9	120.00
C9—C10—C11	118.2 (4)	C10—C11—H11	119.00
C10-C11-C12	121.8 (4)	C12—C11—H11	119.00
C7—C12—C11	119.7 (4)	C7—C12—H12	120.00
O3—C13—C14	121.4 (4)	C11—C12—H12	120.00
N2-C13-C14	115.3 (4)	C13—C14—H14A	110.00
03—C13—N2	123.3 (4)	C13—C14—H14B	109.00
C2—C1—H1A	110.00	C13—C14—H14C	109.00
C2—C1—H1B	110.00	H14A—C14—H14B	109.00
C6—C1—H1A	110.00	H14A—C14—H14C	109.00
C6—C1—H1B	110.00	H14B—C14—H14C	109.00
H1A—C1—H1B	108.00		
01	-46.6(4)	C1 - C2 - C3 - C4	-563(6)
02 - S1 - N1 - C4	-176.8(3)	$C_1 - C_2 - C_3 - C_4$	177 1 (4)
$C_2 = S_1 = N_1 = C_4$	60.2(4)	$C_2 = C_3 = C_4 = C_5$	5/ / (6)
C/511VI	07.2 (4)	C2C3C4C3	54.4 (0)

supplementary materials

O1—S1—C7—C8	-168.3 (3)	N1-C4-C5-C6	-176.8 (4)
O1—S1—C7—C12	10.9 (4)	C3—C4—C5—C6	-53.8 (5)
O2—S1—C7—C8	-38.6 (4)	C4—C5—C6—C1	55.2 (6)
O2—S1—C7—C12	140.5 (3)	S1—C7—C8—C9	177.9 (4)
N1—S1—C7—C8	74.8 (4)	C12—C7—C8—C9	-1.3 (7)
N1—S1—C7—C12	-106.0 (3)	S1-C7-C12-C11	-177.7 (3)
S1—N1—C4—C3	100.2 (4)	C8—C7—C12—C11	1.5 (6)
S1—N1—C4—C5	-136.7 (3)	C7—C8—C9—C10	0.4 (7)
C13—N2—C10—C9	-10.3 (6)	C8—C9—C10—N2	-177.9 (4)
C13—N2—C10—C11	171.5 (4)	C8—C9—C10—C11	0.3 (6)
C10-N2-C13-O3	-1.7 (7)	N2-C10-C11-C12	178.3 (4)
C10-N2-C13-C14	176.7 (4)	C9-C10-C11-C12	-0.1 (6)
C6—C1—C2—C3	56.5 (6)	C10-C11-C12-C7	-0.8 (6)
C2—C1—C6—C5	-56.0 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$	
N1—H1···O3 ⁱ	0.86	2.07	2.862 (4)	153	
N2—H2···O2 ⁱⁱ	0.86	2.11	2.970 (4)	177	
С9—Н9…ОЗ	0.93	2.28	2.866 (5)	120	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+1$, $y-1/2$, $-z+1/2$.					

Fig. 1

